48 research outputs found

    Multipotent Capacity of Immortalized Human Bronchial Epithelial Cells

    Get PDF
    While the adult murine lung utilizes multiple compartmentally restricted progenitor cells during homeostasis and repair, much less is known about the progenitor cells from the human lung. Translating the murine stem cell model to humans is hindered by anatomical differences between species. Here we show that human bronchial epithelial cells (HBECs) display characteristics of multipotent stem cells of the lung. These HBECs express markers indicative of several epithelial types of the adult lung when experimentally tested in cell culture. When cultured in three different three-dimensional (3D) systems, subtle changes in the microenvironment result in unique responses including the ability of HBECs to differentiate into multiple central and peripheral lung cell types. These new findings indicate that the adult human lung contains a multipotent progenitor cell whose differentiation potential is primarily dictated by the microenvironment. The HBEC system is not only important in understanding mechanisms for specific cell lineage differentiation, but also for examining changes that correlate with human lung diseases including lung cancer

    Cost-effectiveness and budget impact analyses of a colorectal cancer screening programme in a high adenoma prevalence scenario using MISCAN-Colon microsimulation model

    Get PDF
    This economic evaluation showed a screening intervention with a major health gain that also produced net savings when a long follow-up was used to capture the late economic benefit. The number of colonoscopies required was high but remain within the capacity of the Basque Health Service. So far in Europe, no other population Colorectal Cancer screening programme has been evaluated by budget impact analysis

    HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus

    Get PDF
    Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme

    The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii

    Get PDF
    corecore